In Our Time: Science

  • Autor: Vários
  • Narrador: Vários
  • Editora: Podcast
  • Duração: 201:23:01
  • Mais informações

Informações:

Sinopse

Scientific principles, theory, and the role of key figures in the advancement of science.

Episódios

  • The Microscope

    28/11/2013 Duração: 42min

    Melvyn Bragg and his guests discuss the development of the microscope, an instrument which has revolutionised our knowledge of the world and the organisms that inhabit it. In the seventeenth century the pioneering work of two scientists, the Dutchman Antonie van Leeuwenhoek and Robert Hooke in England, revealed the teeming microscopic world that exists at scales beyond the capabilities of the naked eye. The microscope became an essential component of scientific enquiry by the nineteenth century, but in the 1930s a German physicist, Ernst Ruska, discovered that by using a beam of electrons he could view structures much tinier than was possible using visible light. Today light and electron microscopy are among the most powerful tools at the disposal of modern science, and new techniques are still being developed.With:Jim Bennett Visiting Keeper at the Science Museum in LondonSir Colin Humphreys Professor of Materials Science and Director of Research at the University of CambridgeMichelle Peckham Professor of Ce

  • Galen

    10/10/2013 Duração: 42min

    Melvyn Bragg and his guests discuss the Roman physician and medical theorist Galen. The most celebrated doctor in the ancient world, Galen was Greek by birth but spent most of his career in Rome, where he was personal physician to three Emperors. He was one of the most prolific authors of his age, and a sixth of all surviving ancient literature in Greek was written by him. Celebrated in his own lifetime, he was regarded as the preeminent medical authority for centuries after his death, both in the Arab world and in medieval Europe. It was only the discoveries of Renaissance science which removed Galen from his dominant position in the pantheon of medicine.With:Vivian Nutton Emeritus Professor of the History of Medicine at University College LondonHelen King Professor of Classical Studies at the Open UniversityCaroline Petit Wellcome Trust Senior Research Fellow in Classics at the University of WarwickProducer: Thomas Morris.

  • Exoplanets

    03/10/2013 Duração: 42min

    Melvyn Bragg and his guests discuss exoplanets. Astronomers have speculated about the existence of planets beyond our solar system for centuries. Although strenuous efforts were made to find such planets orbiting distant stars, it was not until the 1990s that instruments became sophisticated enough to detect such remote objects. In 1992 Dale Frail and Aleksander Wolszczan discovered the first confirmed exoplanets: two planets orbiting the pulsar PSR B1257+12. Since then, astronomers have discovered more than 900 exoplanets, and are able to reach increasingly sophisticated conclusions about what they look like - and whether they might be able to support life. Recent data from experiments such as NASA's space telescope Kepler indicates that such planets may be far more common than previously suspected.With:Carolin Crawford Gresham Professor of Astronomy and a member of the Institute of Astronomy at the University of CambridgeDon Pollacco Professor of Astronomy at the University of WarwickSuzanne Aigrain Lecture

  • Pascal

    19/09/2013 Duração: 41min

    Melvyn Bragg and his guests begin a new series of the programme with a discussion of the French polymath Blaise Pascal. Born in 1623, Pascal was a brilliant mathematician and scientist, inventing one of the first mechanical calculators and making important discoveries about fluids and vacuums while still a young man. In his thirties he experienced a religious conversion, after which he devoted most of his attention to philosophy and theology. Although he died in his late thirties, Pascal left a formidable legacy as a scientist and pioneer of probability theory, and as one of seventeenth century Europe's greatest writers. With:David Wootton Anniversary Professor of History at the University of YorkMichael Moriarty Drapers Professor of French at the University of CambridgeMichela Massimi Senior Lecturer in the Philosophy of Science at the University of Edinburgh.Producer: Thomas Morris.

  • The Invention of Radio

    04/07/2013 Duração: 41min

    Melvyn Bragg and his guests discuss the invention of radio. In the early 1860s the Scottish physicist James Clerk Maxwell derived four equations which together describe the behaviour of electricity and magnetism. They predicted the existence of a previously unknown phenomenon: electromagnetic waves. These waves were first observed in the early 1880s, and over the next two decades a succession of scientists and engineers built increasingly elaborate devices to produce and detect them. Eventually this gave birth to a new technology: radio. The Italian Guglielmo Marconi is commonly described as the father of radio - but many other figures were involved in its development, and it was not him but a Canadian, Reginald Fessenden, who first succeeded in transmitting speech over the airwaves.With:Simon Schaffer Professor of the History of Science at the University of CambridgeElizabeth Bruton Postdoctoral Researcher at the University of LeedsJohn Liffen Curator of Communications at the Science Museum, LondonProducer:

  • Relativity

    06/06/2013 Duração: 42min

    Melvyn Bragg and his guests discuss Einstein's theories of relativity. Between 1905 and 1917 Albert Einstein formulated a theoretical framework which transformed our understanding of the Universe. The twin theories of Special and General Relativity offered insights into the nature of space, time and gravitation which changed the face of modern science. Relativity resolved apparent contradictions in physics and also predicted several new phenomena, including black holes. It's regarded today as one of the greatest intellectual achievements of the twentieth century, and had an impact far beyond the world of science.With:Ruth Gregory Professor of Mathematics and Physics at Durham UniversityMartin Rees Astronomer Royal and Emeritus Professor of Cosmology and Astrophysics at the University of CambridgeRoger Penrose Emeritus Rouse Ball Professor of Mathematics at the University of Oxford.Producer: Thomas Morris.

  • Cosmic Rays

    16/05/2013 Duração: 42min

    Melvyn Bragg and his guests discuss cosmic rays. In 1912 the physicist Victor Hess discovered that the Earth is under constant bombardment from radiation coming from outside our atmosphere. These so-called cosmic rays have been known to cause damage to satellites and electronic devices on Earth, but most are absorbed by our atmosphere. The study of cosmic rays and their effects has led to major breakthroughs in particle physics. But today physicists are still trying to establish where these highly energetic subatomic particles come from.With:Carolin Crawford Gresham Professor of Astronomy and a member of the Institute of Astronomy at the University of Cambridge Alan Watson Emeritus Professor of Physics at the University of Leeds Tim Greenshaw Professor of Physics at the University of Liverpool.Producer: Thomas Morris.

  • Water

    28/03/2013 Duração: 39min

    Melvyn Bragg and his guests discuss one of the simplest and most remarkable of all molecules: water. Water is among the most abundant substances on Earth, covering more than two-thirds of the planet. Consisting of just three atoms, the water molecule is superficially simple in its structure but extraordinary in its properties. It is a rare example of a substance that can be found on Earth in gaseous, liquid and solid forms, and thanks to its unique chemical behaviour is the basis of all known life. Scientists are still discovering new things about it, such as the fact that there are at least fifteen different forms of ice.Hasok Chang Hans Rausing Professor of History and Philosophy of Science at the University of CambridgeAndrea Sella Professor of Chemistry at University College LondonPatricia Hunt Senior Lecturer in Chemistry at Imperial College London.Producer: Thomas Morris.

  • Absolute Zero

    07/03/2013 Duração: 42min

    In a programme first broadcast in 2013, Melvyn Bragg and his guests discuss absolute zero, the lowest conceivable temperature.  In the early eighteenth century the French physicist Guillaume Amontons suggested that temperature had a lower limit.  The subject of low temperature became a fertile field of research in the nineteenth century, and today we know that this limit - known as absolute zero - is approximately minus 273 degrees Celsius.  It is impossible to produce a temperature exactly equal to absolute zero, but today scientists have come to within a billionth of a degree.  At such low temperatures physicists have discovered a number of strange new phenomena including superfluids, liquids capable of climbing a vertical surface.With:Simon Schaffer Professor of the History of Science at the University of CambridgeStephen Blundell Professor of Physics at the University of OxfordNicola Wilkin Lecturer in Theoretical Physics at the University of BirminghamProducer: Thomas Morris

  • Pitt-Rivers

    28/02/2013 Duração: 41min

    Melvyn Bragg and his guests discuss the life and work of the Victorian anthropologist and archaeologist Augustus Pitt-Rivers. Over many years he amassed thousands of ethnographic and archaeological objects, some of which formed the founding collection of the Pitt Rivers Museum at Oxford University. Inspired by the work of Charles Darwin, Pitt-Rivers believed that human technology evolved in the same way as living organisms, and devoted much of his life to exploring this theory. He was also a pioneering archaeologist whose meticulous records of major excavations provided a model for later scholars. With:Adam Kuper Visiting Professor of Anthropology at Boston UniversityRichard Bradley Professor in Archaeology at the University of ReadingDan Hicks University Lecturer & Curator of Archaeology at the Pitt Rivers Museum at the University of Oxford.Producer: Thomas Morris.

  • Comets

    17/01/2013 Duração: 42min

    Melvyn Bragg and his guests discuss comets, the 'dirty snowballs' of the Solar System. In the early 18th century the Astronomer Royal Sir Edmond Halley compiled a list of appearances of comets, bright objects like stars with long tails which are occasionally visible in the night sky. He concluded that many of these apparitions were in fact the same comet, which returns to our skies around every 75 years, and whose reappearance he correctly predicted. Halley's Comet is today the best known example of a comet, a body of ice and dust which orbits the Sun. Since they contain materials from the time when the Solar System was formed, comets are regarded by scientists as frozen time capsules, with the potential to reveal important information about the early history of our planet and others.With:Monica Grady Professor of Planetary and Space Sciences at the Open UniversityPaul Murdin Senior Fellow at the Institute of Astronomy at the University of CambridgeDon Pollacco Professor of Astronomy at the University of Warw

  • Crystallography

    28/11/2012 Duração: 41min

    Melvyn Bragg and his guests discuss the history of crystallography, the study of crystals and their structure. The discovery in the early 20th century that X-rays could be diffracted by a crystal revolutionised our knowledge of materials. This crystal technology has touched most people's lives, thanks to the vital role it plays in diverse scientific disciplines - from physics and chemistry, to molecular biology and mineralogy. To date, 28 Nobel Prizes have been awarded to scientists working with X-ray crystallography, an indication of its crucial importance. The history of crystallography began with the work of Johannes Kepler in the 17th century, but perhaps the most crucial leap in understanding came with the work of the father-and-son team the Braggs in 1912. They built on the work of the German physicist Max von Laue who had proved that X-rays are a form of light waves and that it was possible to scatter these rays using a crystal. The Braggs undertook seminal experiments which transformed our perception

  • Fermat's Last Theorem

    25/10/2012 Duração: 42min

    Melvyn Bragg and his guests discuss Fermat's Last Theorem. In 1637 the French mathematician Pierre de Fermat scribbled a note in the margin of one of his books. He claimed to have proved a remarkable property of numbers, but gave no clue as to how he'd gone about it. "I have found a wonderful demonstration of this proposition," he wrote, "which this margin is too narrow to contain". Fermat's theorem became one of the most iconic problems in mathematics and for centuries mathematicians struggled in vain to work out what his proof had been. In the 19th century the French Academy of Sciences twice offered prize money and a gold medal to the person who could discover Fermat's proof; but it was not until 1995 that the puzzle was finally solved by the British mathematician Andrew Wiles. With:Marcus du Sautoy Professor of Mathematics & Simonyi Professor for the Public Understanding of Science at the University of OxfordVicky Neale Fellow and Director of Studies in Mathematics at Murray Edwards College at the Uni

  • The Cell

    13/09/2012 Duração: 42min

    Melvyn Bragg and his guests discuss the cell, the fundamental building block of life. First observed by Robert Hooke in 1665, cells occur in nature in a bewildering variety of forms. Every organism alive today consists of one or more cells: a single human body contains up to a hundred trillion of them. The first life on Earth was a single-celled organism which is thought to have appeared around three and a half billion years ago. That simple cell resembled today's bacteria. But eventually these microscopic entities evolved into something far more complex, and single-celled life gave rise to much larger, complex multicellular organisms. But how did the first cell appear, and how did that prototype evolve into the sophisticated, highly specialised cells of the human body?With:Steve Jones Professor of Genetics at University College LondonNick Lane Senior Lecturer in the Department of Genetics, Evolution and Environment, University College LondonCathie Martin Group Leader at the John Innes Centre and Professor in

  • Game Theory

    10/05/2012 Duração: 41min

    Melvyn Bragg and his guests discuss game theory, the mathematical study of decision-making. First formulated in the 1940s, the discipline entails devising 'games' to simulate situations of conflict or cooperation. It allows researchers to unravel decision-making strategies, and even to establish why certain types of behaviour emerge. Some of the games studied in game theory have become well known outside academia - they include the Prisoner's Dilemma, an intriguing scenario popularised in novels and films, and which has inspired television game shows. Today game theory is seen as a vital tool in such diverse fields as evolutionary biology, economics, computing and philosophy. With:Ian StewartEmeritus Professor of Mathematics at the University of WarwickAndrew ColmanProfessor of Psychology at the University of LeicesterRichard BradleyProfessor of Philosophy at the London School of Economics and Political Science.Producer: Thomas Morris.

  • Early Geology

    12/04/2012 Duração: 42min

    Melvyn Bragg and his guests discuss the emergence of geology as a scientific discipline. A little over two hundred years ago a small group of friends founded the Geological Society of London. This organisation was the first devoted to furthering the discipline of geology - the study of the Earth, its history and composition. Although geology only emerged as a separate area of study in the late eighteenth century, many earlier thinkers had studied rocks, fossils and the materials from which the Earth is made. Ancient scholars in Egypt and Greece speculated about the Earth and its composition. And in the Renaissance the advent of mining brought further insight into the nature of objects found underground and how they got there. But how did such haphazard study of rocks and fossils develop into a rigorous scientific discipline?With:Stephen PumfreySenior Lecturer in the History of Science at Lancaster UniversityAndrew ScottProfessor of Applied Palaeobotany at Royal Holloway, University of LondonLeucha VeneerResea

  • The Measurement of Time

    29/03/2012 Duração: 41min

    Melvyn Bragg and his guests discuss the measurement of time. Early civilisations used the movements of heavenly bodies to tell the time, but even in the ancient world more sophisticated timekeeping devices such as waterclocks were known. The development of mechanical clocks in Europe emerged in the medieval period when monks used such devices to sound an alarm to signal it was the hour to pray, although these clocks did not tell them the time. For hundreds of years clocks were inaccurate and it proved hard to remedy the problems, let alone settle on a standard time that the country should follow. It was with the advent of the railways that time finally became standardised in Britain in the mid-19th century and only in 1884 that Greenwich became the prime meridian of the world. Atomic clocks now mark the passing of the days, hours, and minutes and they are capable of keeping time to a second in 15 million years. With:Kristen LippincottFormer Director of the Royal Observatory, GreenwichJim BennettDirector of th

  • Conductors and Semiconductors

    23/02/2012 Duração: 41min

    Melvyn Bragg and his guests discuss the physics of electrical conduction. Although electricity has been known for several hundred years, it was only in the early twentieth century that physicists first satisfactorily explained the phenomenon. Electric current is the passage of charged particles through a medium - but a material will only conduct electricity if its atomic structure enables it to do so. In investigating electrical conduction scientists discovered two new classes of material. Semiconductors, first exploited commercially in the 1950s, have given us the transistor, the solar cell and the silicon chip, and have revolutionised telecommunications. And superconductors, remarkable materials first observed in 1911, are used in medical imaging and at the Large Hadron Collider in Geneva. With:Frank CloseProfessor of Physics at the University of OxfordJenny NelsonProfessor of Physics at Imperial College LondonLesley CohenProfessor of Solid State Physics at Imperial College LondonProducer: Thomas Morris.

  • The Scientific Method

    26/01/2012 Duração: 42min

    Melvyn Bragg and his guests discuss the evolution of the Scientific Method, the systematic and analytical approach to scientific thought. In 1620 the great philosopher and scientist Francis Bacon published the Novum Organum, a work outlining a new system of thought which he believed should inform all enquiry into the laws of nature. Philosophers before him had given their attention to the reasoning that underlies scientific enquiry; but Bacon's emphasis on observation and experience is often seen today as giving rise to a new phenomenon: the scientific method.The scientific method, and the logical processes on which it is based, became a topic of intense debate in the seventeenth century, and thinkers including Isaac Newton, Thomas Huxley and Karl Popper all made important contributions. Some of the greatest discoveries of the modern age were informed by their work, although even today the term 'scientific method' remains difficult to define.With: Simon SchafferProfessor of the History of Science at the Unive

  • Macromolecules

    29/12/2011 Duração: 42min

    Melvyn Bragg and guests discuss the giant molecules that form the basis of all life. Macromolecules, also known as polymers, are long chains of atoms. They form the proteins that make up our bodies, as well as many of the materials of modern life. Man's ability to mimic the structure of macromolecules has led to the invention of plastics such as nylon, paints and adhesives. Most of our clothes are made of macromolecules, and our food is macromolecular. The medical sciences are making increasingly sophisticated use of macromolecules, from growing replacement skin and bone to their increasing use in drug delivery. One of the most famous macromolecules is DNA, an infinitely more complex polymer than man has ever managed to produce. We've only known about macromolecules for just over a century, so what is the story behind them and how might they change our lives in the future?With:Tony RyanPro-Vice Chancellor for the Faculty of Science at the University of SheffieldAthene DonaldProfessor of Experimental Physics a

página 6 de 15